Performance of empirical risk minimization in linear aggregation

نویسنده

  • GUILLAUME LECUÉ
چکیده

Let (X ,μ) be a probability space, set X to be distributed according to μ and put Y to be an unknown target random variable. In the usual setup in learning theory, one observes N independent couples (Xi, Yi)Ni=1 in X × R, distributed according to the joint distribution of X and Y . The goal is to construct a real-valued function f which is a good guess/prediction of Y . A standard way of measuring the prediction capability of f is via the risk R(f )= E(Y − f (X))2. The conditional expectation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aggregation via Empirical Risk Minimization

Given a finite set F of estimators, the problem of aggregation is to construct a new estimator whose risk is as close as possible to the risk of the best estimator in F . It was conjectured that empirical minimization performed in the convex hull of F is an optimal aggregation method, but we show that this conjecture is false. Despite that, we prove that empirical minimization in the convex hul...

متن کامل

Aggregation versus Empirical Risk Minimization

Abstract Given a finite set F of estimators, the problem of aggregation is to construct a new estimator that has a risk as close as possible to the risk of the best estimator in F . It was conjectured that empirical minimization performed in the convex hull of F is an optimal aggregation method, but we show that this conjecture is false. Despite that, we prove that empirical minimization in the...

متن کامل

Portfolio Optimization Based on Cross Efficiencies By Linear Model of Conditional Value at Risk Minimization

Markowitz model is the first modern formulation of portfolio optimization problem. Relyingon historical return of stocks as basic information and using variance as a risk measure aretow drawbacks of this model. Since Markowitz model has been presented, many effortshave been done to remove theses drawbacks. On one hand several better risk measures havebeen introduced and proper models have been ...

متن کامل

Empirical risk minimization is optimal for the convex aggregation problem

Let F be a finite model of cardinality M and denote by conv(F ) its convex hull. The problem of convex aggregation is to construct a procedure having a risk as close as possible to the minimal risk over conv(F ). Consider the bounded regression model with respect to the squared risk denoted by R(·). If f̂ ERM-C n denotes the empirical risk minimization procedure over conv(F ), then we prove that...

متن کامل

Suboptimality of Penalized Empirical Risk Minimization in Classification

Let F be a set of M classification procedures with values in [−1, 1]. Given a loss function, we want to construct a procedure which mimics at the best possible rate the best procedure in F . This fastest rate is called optimal rate of aggregation. Considering a continuous scale of loss functions with various types of convexity, we prove that optimal rates of aggregation can be either ((logM)/n)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016